Shreyas Sunil Gaikwad

노 (+1)925-336-5931 🗹 shreyas.gaikwad@utexas.edu **in** linkedin.com/in/shreyasg911 🖓 Shreyas911

EDUCATION

University of Texas at Austin

Ph.D. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0 M.S. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0

Indian Institute of Technology (IIT) Bombay

B. Tech with Honors in Mechanical Engineering (Minor in Computer Science). GPA: 9.32/10.0 EXPERIENCE

• Graduate Research Assistant, UT Austin

- Developed a Bayesian inversion framework for the ice sheet model SICOPOLIS by leveraging open-source Automatic Differentiation tools to perform back-propagation in a Fortran-based numerical model. [1]3]
- Developing a novel feature importance method for Artificial Neural Networks using XAI method Layerwise Relevance Propagation using **Keras** to validate insights from deep learning against oceanic mechanisms. [1]
- Developing deep learning emulators using **Keras** to efficiently simulate seaice dynamics in ocean models.
- Visiting Scholar, Argonne National Laboratory
 - Interfaced Automatic Differentiation and MPI-based parallelism for a mountain glacier simulation in Julia.
 - Developed **first-ever open-source** Bayesian inversion framework for ocean circulation model MITgcm, establishing an alternative to proprietary software that costs \sim \$14,000 per year per individual [1][2]

RESEARCH PROJECTS

- Machine Learning Applications in Geophysics
 - Developed CNNs in **Keras** for earthquake detection using data from stations, with **96% validation accuracy**.
 - Developed U-Nets in Keras for seismic faults detection through image segmentation, with 97% test accuracy.
 - Leveraged Autoencoders in **Keras** to aid clustering through dimensional reduction into the latent space.
 - Built pipeline to pick mudrocks from real wireline logs using ML algorithms, with 87% test accuracy.

• Physics-Informed Machine Learning

- Trained a Deep Neural Network in **PyTorch** to emulate a partial differential equation (PDE) based glacier model by leveraging higher-order derivatives of the PyTorch computational graph.
- Enriched the framework using an expanded computational graph to infer unknown PDE parameters.

• Laplacian 2D Finite Difference (FD) Solver Application

Features: OOP (C++), Solver (gauss, jacobi, PETSc), tests (bats, Travis CI, docker), 98% code coverage (lcov), 0% memory errors (valgrind), build (autotools), HPC env (SLURM), parser & logger (GRVY).

OPEN-SOURCE CONTRIBUTIONS

I SICOPOLIS-AD v2, open-source data assimilation framework for the ice sheet model SICOPOLIS.

- II MITgcm-AD v2, open-source data assimilation framework for the general ocean circulation model MITgcm.
- III **ARGOVIS**, OOP-style Python tools for community use in interactive plotting and binning of Argo data.

TECHNICAL SKILLS

Languages	Python (Keras, PyTorch), Julia, C/C++, Fortran-77/90, MATLAB
HPC toolkit	OpenMP, MPI, CUDA, SLURM, git, docker, shell scripts, CI, autotools, valgrind, lcov, GRVY
HONORS AND AWARDS	

• President and Vice President, Austin Chapter of Society of Industrial & Applied Mathematics (SIAM). 2021-2023 2019

- Recipient of Peter O'Donnell Graduate fellowship worth \$24,000.
- Ranked 509/1,500,000 (99.97 percentile) in nationwide university entrance exams, India.

SELECT COURSEWORK

Data Science	Machine Learning, ML applications in Geophysics, Engineering Data Mining
Algorithms	Differential Equations, Linear Algebra, HPC, Functional Analysis, Data Structures & Algorithms
Modeling	Uncertainty Quantification in Modeling, Mathematical Modeling, Quantum & Statistical Mechanics
INVITED TALKS	

• SS Gaikwad et. al "Computational Science to enable Digital Twins of the Oceans", 6th SIAM Texas-Louisiana Sectional Meeting (SIAM TX-LA) 2023.

JOURNAL ARTICLES

- 1. SS Gaikwad et. al "Pairing Neural Networks with Adjoints for Flexible Investigation and Robust Attribution of Ocean Variability." In preparation for submission to Geophysical Research Letters (2024).
- 2. SS Gaikwad et. al "MITgcm-AD v2: tangent linear and adjoint modeling framework for the oceans and atmosphere enabled by the Automatic Differentiation tool Tapenade." Preprint on arXiv, submitted to JLESC-FGCS (2024).
- 3. SS Gaikwad et. al "SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by Automatic Differentiation tool Tapenade." Journal of Open Source Software 8, no. 83 (2023): 4679.

Austin, Texas 2020-2025 2019-2021

Mumbai, India 2015-2019

2020-Present

Summer 2022

Spring 2021

Spring 2021

Fall 2020

2015